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Abstract: We describe the isomorphic structure of the so-called weakly strongly nil-boolean rings that are
rings R whose elements r satisfy the relation r2(±1+q) = r+q for some existing nilpotent q which depends
on r. We prove that the Jacobson radical J(R) in R is a nil-ideal whose elements satisfy special equalities
and that either R/J(R) ∼= B, or R/J(R) ∼= Z3, or R/J(R) ∼= B × Z3, where B is a Boolean ring. This
somewhat supplies our recent investigations in Irish Math. Soc. Bull. (2015), Tsukuba J. Math. (2016),
Rend. Sem. Mat. Univ. Politech. Torino (2018) and Internat. Balkan J. Math., retitled as Eurasian Bull.
Math. (2018).
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1 Introduction

Everywhere in the text of the current paper, all our rings R are assumed to be associative, containing the
identity element 1, which differs from the zero element 0 of R. Our standard terminology and notations
are mainly in agreement with [8]. For instance, to be more exact, U(R) denotes the set of all units in R,
Nil(R) the set of all nilpotents in R and J(R) the Jacobson radical of R.

The well-known notion of Boolean rings states that each element in these rings is an idempotent. These
rings are successfully classified as the subdirect product of the field Z2. Several other generalizations of
this subject were presented in [1], [2]-[6] and [7], respectively. Specifically, in [1] and in [7] plus [4] were
independently characterized those rings R, calling them weakly boolean, whose elements are solutions of the
equations x2 = x or x2 = −x. It was established there that either R ∼= B, or R ∼= Z3, or R ∼= B × Z3.
Moreover, in [2] and, respectively in [3], were explored rings of the type r(1+q)r = r and r2(1+q) = r which
are showed to be Boolean rings and, respectively, rings of the type r(±1+q)r = r and r2(±1+q) = r which
are showed to be the aforementioned weakly boolean rings. These rings are hopefully closely related to the
well-known (strongly) regular rings R (see, e.g., [9]) satisfying for all their elements r ∈ R the equalities
rar = r (resp., r2a = r) for some existing element a in R which depends on r.

It is, therefore, rather natural to continue the consideration of rings of some special sorts of the above kind.
So, we come to our new key point of view, which is a common generalization of the classical concept of
Boolean rings.

Definition 1.1. We shall say that the ring R is strongly nil-boolean if, for each r ∈ R, there exists
q ∈ Nil(R) with r2(1 + q) = r + q and that R is weakly strongly nil-boolean provided r2(±1 + q) = r + q.

The purpose motivated the writing up of this short article is to describe up to an isomorphism the stated
above two classes of rings, and thus to support the aforementioned results studied in this branch. This will
be done in the subsequent section.

2 The Main Result

We will prove now the following assertion.

Theorem 2.1. Let R be a weakly strongly nil-boolean ring. Then J(R) is nil and either R/J(R) ∼= B is
Boolean, or R/J(R) ∼= Z3, or R/J(R) ∼= B × Z3.

In particular, if R is strongly nil-boolean, then J(R) is nil and R/J(R) ∼= B is Boolean.

Proof. For the element r = 2 substituted in the equality from Definition 1.1, we have that 22(±1+q) = 2+q
for some nilpotent q, whence 4(1 + q) = 2 + q or 4(−1 + q) = 2 + q. Thus 2 = −3q ∈ Nil(R) or
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6 = 3q ∈ Nil(R). Finally, in both cases, 6 ∈ Nil(R). Consequently, the Chinese Remainder Theorem
yields the decomposition R ∼= R1 × R2 for some rings R1 and R2, where R1 = {0} or 2 ∈ Nil(R1) as well
as R2 = {0} or 3 ∈ Nil(R2). Routine coordinate-wise arguments show that both R1, R2 are also weakly
strongly nil-boolean rings.

We foremost shall consider the partial cases when 2 = 0 in R1 and when 3 = 0 in R2; so 6 = 0 in R.

Case 1: ”Consider R1”: For any r1 ∈ R1 it must be that r21(1 + q1) = r1 + q1, for some q1 ∈ Nil(R1).
Consequently, replacing r1 by r1 + 1 in this equation, we arrive at (r1 + 1)2(1 + t1) = (r1 + 1) + t1
for some existing t1 ∈ Nil(R1), i.e., we deduce that (r21 + 1)(1 + t1) = (r1 + 1) + t1 = r1 + (1 + t1)
because 2 = 0. Hence r21(1 + t1) = r1. We claim that Nil(R1) = {0}. To that aim, given d1 ∈ R1

with d21 = 0, it follows that d21(1 + t1) = d1, that is exactly, d1 = 0, as pursued. That is why, r21 = r1
which means that R1 is Boolean, as stated.

Case 2: ”Consider R2”: For any r2 ∈ R2 it has to be that r22(1+q2) = r2+q2 or that r22(−1+q2) = r2+q2,
for some q2 ∈ Nil(R2). It is, therefore, obvious that if v2 ∈ R2 with v22 = 1, then either v2 = 1 or
v2 = −1. So, for each idempotent e2 ∈ R2, we derive that 2e2 − 1 = 1 or that 2e2 − 1 = −1.
Thus either e2 = 1 or e2 = 0 as 3 = 0 and 2e2 = −e2. This allows us to infer that R2 is strongly
indecomposable in the sense that it does not possess non-trivial idempotents.

Moreover, (r2+1)2(1+t2) = (r2+1)+t2 or (r2+1)2(−1+t2) = (r2+1)+t2 for some existing t2 ∈ Nil(R2).
The first equality implies that r22(1 + t2) = r2(t2 − 1), and the second one that r22(−1 + t2) = r2t2 − 1. We
now assert that Nil(R2) = {0}. To illustrate this, given d2 ∈ R2 with d22 = 0, it follows that d2(t2− 1) = 0
or that d2t2 = 1. Therefore, in both situations, by taking into account that t2 − 1 ∈ U(R2), it readily
follows that d2 = 0, as required, as the second equality d2t2 = 1 is totally impossible forcing that 0 = 1.
Furthermore, r22 = −r2 or r22 = 1 yielding actually with the aid of [7] (or by virtue of [1]) that R2

∼= Z3,
as asked for (and thus we also receive r22 = ±r2 for all r2 ∈ R2 by replacing r2 → r2 − 1 and bearing in
mind that 3 = 0). Nevertheless, another useful argument, in order to conclude that R2 is the three element
field, is like this: r22 = −r2 along with r22 = 1 (same as r22 = ±r2) enable us that r32 = r2 and, therefore, we
exploit [8] to extract that R2 is a subdirect product of family of copies of rings isomorphic to Z3. However,
by what we have just shown above, the ring R2 does not have non-trivial idempotents. This allows us to
conclude that R2

∼= Z3 after all.

We are now ready to handle the general case. To do that, it is elementarily to see that R ∼= R1 × R2 will
imply that J(R) ∼= J(R1)×J(R2) and also that R/J(R) ∼= [R1/J(R1)]× [R2/J(R2)], where the first direct
factor is of characteristic 2, and the latter one is of characteristic 3, because 2 ∈ J(R1) and 3 ∈ J(R2).
Henceforth, we may employ Cases 1 and 2 alluded to above to get the desired isomorphism result. The
second stated particular isomorphism description is now an immediate consequence of what we have already
proved so far.

As to show next that J(R) is nil, given an arbitrary element z ∈ J(R) such that z2(±1 + q) = z + q for
some existing q ∈ Nil(R). We differ two cases, namely z2(1 + q) = z + q or z2(−1 + q) = z + q. In the first
possibility, we write z2 − z = (1− z2)q, i.e., −(1− z)z = (1− z)(1 + z)q. Since 1− z ∈ U(R), it follows by
canceling on the left that −z = q + zq and hence that z(q + 1) = −q. Finally, z = −q(q + 1)−1 ∈ Nil(R),
as expected.

In the second situation, we write z2 + z = (z2 − 1)q, that is, (z + 1)z = (z + 1)(z − 1)q. Since z + 1 ∈
U(R), we may cancel the identity again on the left, so that z = zq − q whence z(q − 1) = q. Finally,
z = q(q − 1)−1 ∈ Nil(R), as promised. This proves our claim about the nil property of J(R).

It is worthwhile to add the following comments:

Remark 2.2. In general, according to the results from [7], weakly strongly nil-boolean rings are themselves
weakly nil clean, that is, each element is a sum or a difference of a nilpotent and an idempotent. Indeed,
invoking Theorem 2.1, for any r ∈ R it is fulfilled that r2 − r ∈ J(R) or r2 + r ∈ J(R). Since J(R) is nil,
there is an idempotent e ∈ R such that e − r ∈ J(R) ⊆ Nil(R) or e + r ∈ J(R) ⊆ Nil(R) which ensure
that r ∈ Id(R) + Nil(R) or r ∈ −Id(R) + Nil(R), as required, substantiating our claim.

However, if 2 = 0 in strongly nil-boolean rings, they are necessarily Boolean; while if 6 = 0 in weakly strongly
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nil-boolean rings, they are of necessity weakly boolean. In fact, one sees that J(R) = {0} whenever 6 = 0
and we just need to apply Theorem 2.1.

We end our work with a series of problems as follows:

Problem 2.3. Describe (weakly) nil-boolean rings that are rings R for which, for every r ∈ R, the relation
r(1 + q)r = r + q (resp., r(±1 + q)r = r + q) holds, for some q ∈ Nil(R) depending on r.

The next query is a slight restatement from [2]. Consulting with [7] for more account, let us recall that a
ring is said to be nil clean if all its elements are sums of a nilpotent and an idempotent, whereas it is said
to be weakly nil clean if all its elements are sums or differences of a nilpotent and an idempotent.

Problem 2.4. Characterize all rings R such that, for every r ∈ R, there exist a nilpotent q ∈ R and an
idempotent e ∈ R with the property r(e + q)r = r or, more generally, even that r(±e + q)r = r. Are these
rings nil clean or, respectively, weakly nil clean?

In closing, as a simple union of the previous two questions, we can state the following.

Problem 2.5. In the presence of above notations, classify all rings R whose elements satisfy the equalities
r(e+ q)r = r+ q or r(±e+ q)r = r+ q, respectively. What is their relationship with the classes of (weakly)
nil clean rings?

3 Methods

We mainly have used a straightforward machinery to obtain the chief result described above.

4 Results

The basic result established above states that (weakly) strongly nil-boolean rings are characterizable in
terms of Boolean rings, the field Z3 eventually, and nil Jacobson radicals only.

5 Discussion

Our results stated above are somewhat a natural continuation of previous author’s achievements listed
below in the bibliography.
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